

### **Bath Clean Air Plan**

Bath and North East Somerset Council

G-BATH Highway Model Local Model Validation Report: Addendum: LGV and HGV Validation

674726.BR.042.FBC-15 | 2 January 2020





#### **Bath Clean Air Plan**

Project No: 674726.BR.042

Document Title: G-BATH Highway Model Local Model Validation Report: Addendum: LGV and HGV

Validation

Document No.: 674726.BR.042.FBC-15

Revision: 2

Date: January 2020

Client Name: Bath and North East Somerset Council

Project Manager: RR
Author: KW/JG

Jacobs Consultancy Ltd.

1 The Square, Temple Quay 2nd Floor Bristol, BS1 6DG United Kingdom T +44 (0)117 910 2580 F +44 (0)117 910 2581 www.jacobs.com

© Copyright 2019 Jacobs Consultancy Ltd.. The concepts and information contained in this document are the property of Jacobs. Use or copying of this document in whole or in part without the written permission of Jacobs constitutes an infringement of copyright.

Limitation: This document has been prepared on behalf of, and for the exclusive use of Jacobs' client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this document by any third party.

#### **Document history and status**

| Revision | Date       | Description | Ву | Review | Approved |
|----------|------------|-------------|----|--------|----------|
| 1        | 18.12.2019 | FBC Draft   | СВ | RR     | RR       |
| 2        | 17.01.2020 | Final FBC   | СВ | RR     | RR       |
|          |            |             |    |        |          |
|          |            |             |    |        |          |
|          |            |             |    |        |          |
|          |            |             |    |        |          |
|          |            |             |    |        |          |



#### **Contents**

| 1.  | Introduction                                     | 3  |
|-----|--------------------------------------------------|----|
| 2.  | Base Year Model - LMVR Summary                   |    |
| 2.1 | G-BATH model                                     |    |
| 2.2 | Modelling of good vehicles                       | 5  |
| 3.  | Base Year Model – LGV and HGV Validation         |    |
| 3.1 | Validation Criteria and Acceptability Guidelines | 6  |
| 3.2 | Screenlines and Cordons                          | 7  |
| 4.  | Results                                          | 13 |
| 5.  | Conclusion                                       | 20 |
| 5.1 | Way Forward                                      | 20 |



### 1. Introduction

Due to air quality exceedances Bath and North-East Somerset Council (BANES) has been directed by Defra to produce a Clean Air Plan to achieve air quality improvements in the shortest possible time. As part of the Plan, BANES is considering implementation of a Clean Air Zone (CAZ), possibly including both charging and non-charging measures. Jacobs has been commissioned by BANES to assess the available CAZ options in order to establish which will deliver compliance in the shortest possible time possible.

The existing G-BATH model will be used for the assessment of the CAZ measures. This model has been calibrated and validated in accordance with the WebTAG guidelines, however the Joint Air Quality Unit (JAQU) Evidence Guidance requires further clarification on the modelled fit of light and heavy goods vehicles, in terms of short screenlines using grouped counts.

This technical note reports on the light and heavy goods vehicle link flow validation.



## 2. Base Year Model - LMVR Summary

#### 2.1 G-BATH model

The G-BATH model was updated by Mott MacDonald on behalf of BANES to assist in analysing the impacts of its strategies on improving access from the east of Bath. This work is reported in "Access to Bath from the East – Highway Model – Local Model Validation Report" in June 2015, from which the following summary is taken, as relevant context for the assessment of light and heavy goods vehicles.

Highway models have been developed in SATURN to represent the AM peak hour (08:00-09:00), an average hour in the inter-peak (10:00 – 16:00) and the PM peak hour (17:00 – 18:00) in an average Monday to Friday weekday in October 2014.

The existing 2006 SATURN G-Bath model was updated to the new base year of 2014. The development of the highway model relied on new surveys carried out in autumn 2014 including Road Side Interviews, automatic/manual traffic counts and manual classified turning counts across screenlines and cordons around the city. Additional data such as 2011 census journey to work and TrafficMaster data for 2013/2014 academic year were also used.

For the 2014 rebase of the G-Bath model seven journey time routes have been defined. Observed journey time data has been sourced from TrafficMaster subject to checks on the integrity of the dataset in each case.

Trip matrices have been prepared in line with current guidance based on both observed and synthetic data. Details of checks undertaken at key stages in the development of the matrices are presented in the report to ensure that the provenance of the matrices is maintained. Checks include analysis of the observed and synthetic matrices prior to merging and, subsequent to merging, comparisons with counts before applying matrix estimation. Detailed analyses of the effects of matrix estimation are also documented in line with current WebTAG guidance.

The SATURN model convergence meets WebTAG criteria in all time periods.

The model achieves a good level of flow calibration with results indicating a close match to observations on the calibration screenlines/cordons and for individual link/turning counts, with the required WebTAG criteria being met in all time periods for both all vehicles and cars.

Flow validation has been undertaken against independent data not used in calibration nor for the matrix building exercise. An assessment of the validation process shows that the model also achieves a good level of flow validation in each of the modelled time periods, meeting the WebTAG validation criteria in all case except one.

The validation of the model on the west side of the city has been affected by the partial closure of A431 Kelston Road, although this will not have much impact on the future assessment of a possible link road or P&R site on the east of the city.

The journey time validation is considered to be very good in all time periods with the model recreating journey times that are representative on key routes in the modelled area.

In conclusion, it is considered that the base year highway assignment models developed for the 2014 G-Bath transport model demonstrate a good representation of traffic behaviour in the study area and form a robust basis from which future year forecasts and option testing can be developed.

The G-BATH model also includes a PT assignment model and variable demand model, however it is the highway model that will be used as the primary means of assessing the CAZ measures.



#### 2.2 Modelling of good vehicles

The G-BATH highway model has seven user classes of which two cover goods vehicles:

- Light goods vehicles (LGVs) user class 6; and
- Heavy goods vehicles (HGVs) user class 7.

In the assignment HGVs are factored to passenger car units by applying a factor of 2.3 to allow for the additional highway capacity used by HGVs compared with cars.



### 3. Base Year Model – LGV and HGV Validation

The light and heavy goods vehicles have not previously been validated separately, as traffic flows on individual links and screenlines have been validated against the number of cars and the total number of vehicles. For this note, a check has been undertaken of the validation of goods vehicles on a series of short screenlines as referred to in WebTAG M3.1 Section 9.3.1.

It should be noted that JAQU, as outlined in the Evidence Package section 2.1.2, require that all reasonable efforts are made to bring the transport model as close as reasonably possible to WebTAG validation criteria. In instances where models would require significant update, JAQU will not require all WebTAG guidance on validation to be followed where impacts of any shortcomings can be overcome elsewhere in the analysis.

#### 3.1 Validation Criteria and Acceptability Guidelines

Highway model validation acceptability guidelines are specified in WebTAG M3.1. This also states however that a model can still be deemed as 'fit for purpose' if it does not meet these guidelines, and indeed if they are met that the model is not automatically deemed so. If these criteria cannot be fully met, the importance of the relevant locations to overall model validation and assessment of proposed schemes should be reviewed to ensure the model is still fit for purpose.

The validation criteria and acceptability guidelines as specified in TAG M3.1 are shown in Table 3-1 below. The observed flow and screenline flow criteria have been applied to "all vehicles" and "cars/LGVs" in the G-BATH Highway Local Model Validation Report. Hence, the need for additional checks relating to goods vehicles in this note.

Table 3-1: WebTAG Acceptability Guidelines

|   | Criteria and Measure                                            | Acceptability Gui                                                                                             | ideline        |
|---|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------|
|   | Flow Difference C                                               | riteria                                                                                                       |                |
| 1 | Total screenline flows (normally > 5 links) to be within +/- 5% | All (or nearly all) screenlines                                                                               |                |
| 2 | Observed (individual) link flow < 700vph                        | Modelled flow within +/- 100vph                                                                               | > 85% of links |
|   | Observed (individual) link flow 700 to 2700vph                  | Modelled flow within +/- 15%                                                                                  | > 85% of links |
|   | Observed (individual) link flow > 2700vph                       | Modelled flow within +/- 400vph                                                                               | > 85% of links |
|   | GEH Criteria                                                    | i de la companya de |                |
| 3 | GEH statistic for individual link flows <5                      |                                                                                                               | > 85% of links |
|   | Journey Time Vali                                               | dation                                                                                                        |                |
| 4 | Modelled times along routes should be within 15% (or 1 minute   | e, if higher)                                                                                                 | > 85% of links |

The GEH statistic, included in Table 3-1, is used as an indicator of the extent to which the modelled flows match the corresponding observed flows. This is recommended in the guidelines contained in TAG M3.1 and is defined as:

$$GEH = \sqrt{\frac{(M-C)^2}{0.5(M+C)}}$$
 Where:

M = modelled flow; and

C = observed flow.



#### 3.2 Screenlines and Cordons

For the original calibration/validation carried out by Mott MacDonald six cordons and screenlines were used. As the A4 and RSI screenlines cover roads located to the east of Bath, the first four cordons on the list below were used for the goods vehicle validation as shown in Figure 3-1 to Figure.

- Bath Inner Cordon
- Bath Intermediate Cordon
- Bath RSI Cordon
- Bath Outer Cordon
  - A4 Screenline
  - RSI Screenline

The screenlines and cordons were segmented into smaller sections and counts grouped into a series of short screenlines as per Table 3-2 to compare observed and modelled LGV and HGV flows, in line with JAQU requirements and as referred to in TAG unit M3.1.

Table 3-2: Cordons & short screenlines

| Cordon            | Short Screenlines         |
|-------------------|---------------------------|
| Bath Inner        | Inner - North             |
|                   | Inner - South             |
|                   | Inner - West              |
| Bath Intermediate | Intermediate - East       |
|                   | Intermediate - North      |
|                   | Intermediate – North West |
|                   | Intermediate – South      |
|                   | Intermediate – South West |
| Bath Outer        | Outer - North             |
|                   | Outer - South             |
|                   | Outer - West              |
| RSI Outer         | RSI - North               |
|                   | RSI - South               |
| _                 | RSI - West                |



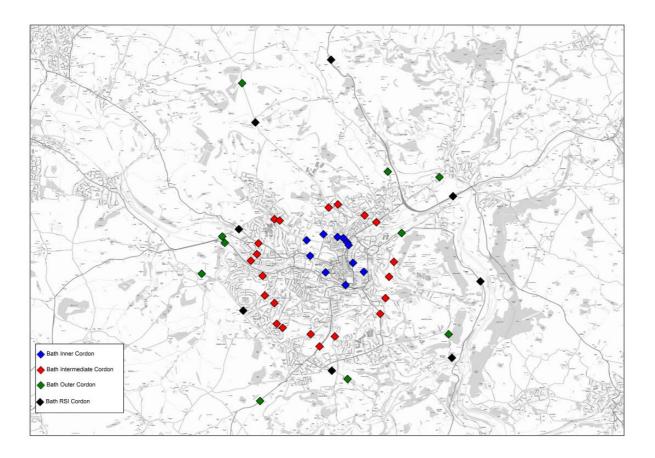



Figure 3-1: G-BATH cordons



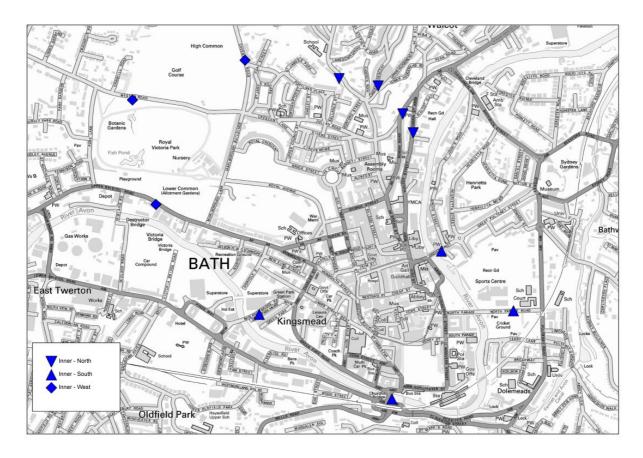



Figure 3-2: Bath Inner Cordon



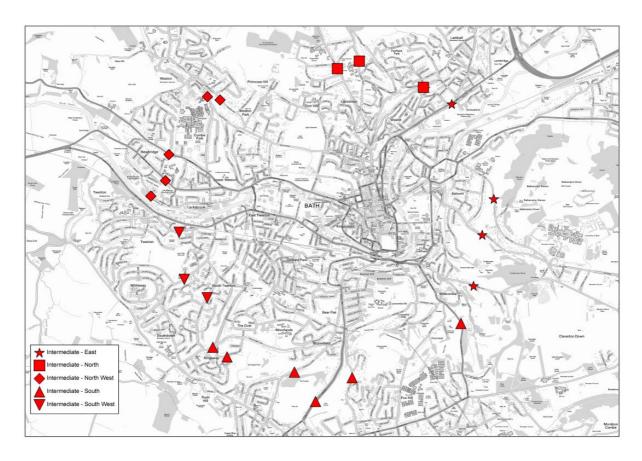



Figure 3-3: Bath Intermediate Cordon



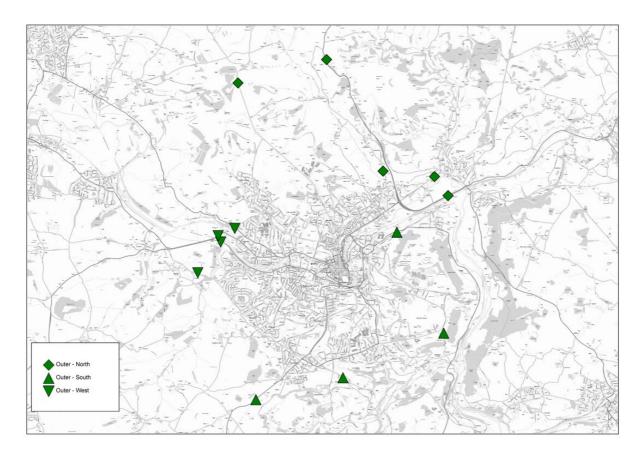



Figure 3-4: Bath Outer Cordon



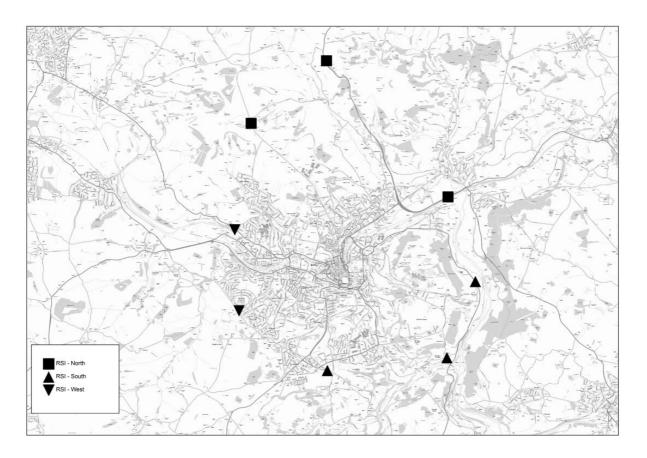



Figure 3-5: Bath RSI Cordon



## 4. Results

Table 4-1 to Table 4-3 show whether the short screenlines meet the WebTAG criteria for individual links in Table 3-1, in accordance with TAG M3.1 for light and heavy goods vehicles. The tables show observed count totals, modelled flow totals (in vehicles not PCUS), GEH and whether the modelled flows meet the link flow difference criteria for each short screenline. LGV, HGVs and HGVs after post processing of the modelled data is shown as the HGV modelled flows to not pass the GEH criteria.

Table 4-1: AM Peak short screenline validation

|                                              |                  |                   | LGV              | 's                   |      | Screenli          | ne meeting<br>HG\ | WebTAG cı<br>/s      | riteria | н                 | GVs (post a      | djustment)           |      |
|----------------------------------------------|------------------|-------------------|------------------|----------------------|------|-------------------|-------------------|----------------------|---------|-------------------|------------------|----------------------|------|
| Short Screenline                             | No. of<br>Counts | Observed<br>Count | Modelled<br>Flow | Link flow difference | GEH  | Observed<br>Count | Modelled<br>Flow  | Link flow difference | GEH     | Observed<br>Count | Modelled<br>Flow | Link flow difference | GEH  |
| Inner cordon - west: inbound                 | 3                | 108               | 107              | ✓                    | 0.07 | 12                | 7                 | ✓                    | 1.78    | 12                | 4                | ✓                    | 2.80 |
| Inner cordon - south: inbound                | 4                | 135               | 119              | ✓                    | 1.47 | 32                | 69                | ✓                    | 5.23    | 32                | 43               | ✓                    | 1.75 |
| Inner cordon - north: inbound                | 4                | 64                | 94               | ✓                    | 3.41 | 28                | 37                | ✓                    | 1.58    | 28                | 23               | ✓                    | 1.02 |
| Inner cordon - west: outbound                | 3                | 58                | 55               | ✓                    | 0.35 | 8                 | 10                | ✓                    | 0.78    | 8                 | 6                | ✓                    | 0.58 |
| Inner cordon - south: outbound               | 4                | 117               | 105              | ✓                    | 1.14 | 23                | 48                | ✓                    | 4.22    | 23                | 30               | ✓                    | 1.30 |
| Inner cordon - north: outbound               | 4                | 103               | 119              | ✓                    | 1.47 | 34                | 45                | ✓                    | 1.74    | 34                | 28               | ✓                    | 1.14 |
| Intermediate cordon -<br>northwest: inbound  | 5                | 108               | 118              | ✓                    | 0.91 | 20                | 43                | ✓                    | 4.04    | 20                | 26               | ✓                    | 1.29 |
| Intermediate cordon -<br>southwest: inbound  | 3                | 48                | 47               | <b>√</b>             | 0.05 | 4                 | 6                 | <b>√</b>             | 1.04    | 4                 | 4                | <b>√</b>             | 0.01 |
| Intermediate cordon - south: inbound         | 6                | 130               | 116              | ✓                    | 1.25 | 23                | 47                | ✓                    | 4.00    | 23                | 29               | <b>√</b>             | 1.10 |
| Intermediate cordon - north: inbound         | 3                | 54                | 55               | ✓                    | 0.18 | 16                | 3                 | ✓                    | 4.41    | 16                | 2                | <b>√</b>             | 4.86 |
| Intermediate cordon - east: inbound          | 4                | 77                | 79               | <b>√</b>             | 0.21 | 39                | 106               | ✓                    | 7.94    | 39                | 65               | ✓                    | 3.72 |
| Intermediate cordon -<br>northwest: outbound | 5                | 63                | 48               | ✓                    | 2.03 | 24                | 25                | ✓                    | 0.24    | 24                | 15               | ✓                    | 1.89 |
| Intermediate cordon -<br>southwest: outbound | 3                | 34                | 31               | ✓                    | 0.46 | 7                 | 3                 | ✓                    | 1.61    | 7                 | 2                | ✓                    | 2.32 |
| Intermediate cordon - south: outbound        | 6                | 99                | 97               | ✓                    | 0.26 | 25                | 37                | ✓                    | 2.27    | 25                | 23               | ✓                    | 0.34 |
| Intermediate cordon - north:<br>outbound     | 3                | 32                | 35               | ✓                    | 0.42 | 18                | 5                 | ✓                    | 3.85    | 18                | 3                | ✓                    | 4.61 |
| Intermediate cordon - east:<br>outbound      | 4                | 70                | 79               | ✓                    | 1.03 | 35                | 111               | ✓                    | 8.87    | 35                | 68               | ✓                    | 4.61 |
| Outer cordon - west: inbound                 | 4                | 185               | 263              | ✓                    | 5.21 | 37                | 105               | ✓                    | 8.16    | 37                | 65               | ✓                    | 3.97 |
| Outer cordon - south: inbound                | 4                | 159               | 151              | ✓                    | 0.65 | 41                | 74                | ✓                    | 4.42    | 41                | 46               | ✓                    | 0.77 |
| Outer cordon - north: inbound                | 5                | 291               | 329              | ✓                    | 2.13 | 98                | 243               | ×                    | 11.14   | 98                | 150              | ✓                    | 4.68 |
| Outer cordon - west: outbound                | 4                | 115               | 138              | ✓                    | 2.01 | 26                | 72                | ✓                    | 6.53    | 26                | 44               | <b>√</b>             | 3.05 |
| Outer cordon - south: outbound               | 4                | 98                | 110              | ✓                    | 1.17 | 23                | 66                | ✓                    | 6.44    | 23                | 40               | ✓                    | 3.13 |
| Outer cordon - north: outbound               | 5                | 204               | 227              | ✓                    | 1.54 | 60                | 235               | ×                    | 14.40   | 60                | 145              | ✓                    | 8.37 |
| RSI cordon - west: inbound                   | 3                | 122               | 111              | ✓                    | 1.05 | 25                | 59                | ✓                    | 5.17    | 25                | 36               | ✓                    | 1.96 |
| RSI cordon - south: inbound                  | 3                | 90                | 90               | ✓                    | 0.00 | 26                | 56                | ✓                    | 4.76    | 26                | 35               | ✓                    | 1.61 |
| RSI cordon - north: inbound                  | 3                | 263               | 277              | ✓                    | 0.86 | 87                | 232               | ×                    | 11.50   | 87                | 143              | ✓                    | 5.24 |
| RSI cordon - west: outbound                  | 3                | 70                | 71               | ✓                    | 0.08 | 11                | 48                | ✓                    | 6.75    | 11                | 30               | ✓                    | 4.06 |
| RSI cordon - south: outbound                 | 3                | 68                | 68               | ✓                    | 0.06 | 14                | 34                | ✓                    | 4.17    | 14                | 21               | ✓                    | 1.76 |
| RSI cordon - north: outbound                 | 3                | 184               | 198              | ✓                    | 0.99 | 57                | 202               | ×                    | 12.69   | 57                | 124              | ✓                    | 7.03 |
| % screenlines meet WebTAG cr                 | iteria - :       |                   |                  | 100%                 | 96%  |                   |                   | 86%                  | 57%     |                   |                  | 100%                 | 89%  |



Table 4-2: Interpeak short screenline validation

|                                          |        |          |      |                   |       | Screenli |      | WebTAG cı            | riteria |              |                           |                             |       |
|------------------------------------------|--------|----------|------|-------------------|-------|----------|------|----------------------|---------|--------------|---------------------------|-----------------------------|-------|
|                                          | No of  | Observed | LG\  | /s<br>  Link flow |       | Observed | HG\  |                      |         |              | GVs (post a<br>I Modelled | djustment)<br>I Link flow I |       |
| Short Screenline                         | Counts | Count    | Flow | difference        | GEH   | Count    | Flow | Link flow difference | GEH     | Count        | Flow                      | difference                  | GEH   |
| Inner cordon - west: inbound             | 3      |          | 94   | ✓                 | 0.10  | 6        | 3    | <b>√</b>             | 0.98    | 6            | 2                         | <b>√</b>                    | 2.11  |
| Inner cordon - south: inbound            | 4      | 140      | 125  | ✓                 | 1.29  | 20       | 60   | <b>√</b>             | 6.46    | 20           | 27                        | <b>√</b>                    | 1.64  |
| Inner cordon - north: inbound            | 4      | 72       | 90   | ✓                 | 1.96  | 21       | 38   | ✓                    | 3.10    | 21           | 17                        | ✓                           | 0.90  |
|                                          | · ·    |          |      |                   |       |          |      |                      |         |              |                           |                             |       |
| Inner cordon - west: outbound            | 3      | 78       | 79   | ✓                 | 0.07  | 6        | 5    | ✓                    | 0.55    | 6            | 2                         | ✓                           | 1.94  |
| Inner cordon - south: outbound           | 4      | 134      | 125  | ✓                 | 0.81  | 17       | 42   | ✓                    | 4.71    | 17           | 19                        | ✓                           | 0.59  |
| Inner cordon - north: outbound           | 4      | 99       | 118  | ✓                 | 1.90  | 22       | 47   | ✓                    | 4.30    | 22           | 21                        | ✓                           | 0.09  |
| Intermediate cordon -                    |        |          |      |                   |       |          |      |                      |         |              |                           |                             |       |
| northwest: inbound                       | 5      | 93       | 85   | <b>√</b>          | 0.77  | 12       | 25   | ✓                    | 3.17    | 12           | 12                        | ✓                           | 0.05  |
| Intermediate cordon -                    |        | - 00     |      |                   | 0     |          |      |                      | 0       | ·            |                           |                             | 0.00  |
| southwest: inbound                       | 3      | 45       | 36   | ✓                 | 1.36  | 3        | 1    | ✓                    | 1.06    | 3            | 1                         | ✓                           | 1.66  |
| Intermediate cordon - south:             |        |          |      |                   |       |          |      |                      |         |              |                           |                             |       |
| inbound                                  | 6      | 105      | 104  | ✓                 | 0.19  | 17       | 35   | ✓                    | 3.45    | 17           | 16                        | ✓                           | 0.33  |
| Intermediate cordon - north:             |        |          |      |                   |       |          |      |                      |         |              |                           |                             |       |
| inbound                                  | 3      | 31       | 34   | ✓                 | 0.39  | 5        | 5    | ✓                    | 0.11    | 5            | 2                         | ✓                           | 1.50  |
| Intermediate cordon - east:              |        |          |      |                   |       |          |      |                      |         |              |                           |                             |       |
| inbound                                  | 4      | 95       | 103  | ✓                 | 0.81  | 28       | 124  | ✓                    | 11.08   | 28           | 57                        | ✓                           | 4.45  |
| Intermediate cordon -                    |        |          |      |                   |       |          |      |                      |         |              |                           |                             |       |
| northwest: outbound                      | 5      | 79       | 62   | ✓                 | 1.98  | 19       | 34   | ✓                    | 2.78    | 19           | 15                        | ✓                           | 0.98  |
| Intermediate cordon -                    |        |          |      |                   |       |          |      |                      |         |              |                           |                             |       |
| southwest: outbound                      | 3      | 40       | 36   | ✓                 | 0.62  | 7        | 4    | ✓                    | 1.28    | 7            | 2                         | ✓                           | 2.41  |
| Intermediate cordon - south:             |        | 400      | 0.0  | ✓                 |       |          |      | <b>√</b>             |         |              | 40                        | <b>√</b>                    |       |
| outbound<br>Intermediate cordon - north: | 6      | 103      | 96   | V                 | 0.69  | 20       | 36   | <b>√</b>             | 2.96    | 20           | 16                        | <b>√</b>                    | 0.89  |
| outbound                                 | 3      | 32       | 34   | ✓                 | 0.37  | 7        | 4    | <b>√</b>             | 1.42    | 7            | 2                         | ✓                           | 2.60  |
| Intermediate cordon - east:              | 3      | 32       | 34   | ·                 | 0.37  | '        | 4    | ·                    | 1.42    | <del>'</del> |                           | ·                           | 2.00  |
| outbound                                 | 4      | 110      | 105  | <b>√</b>          | 0.53  | 30       | 101  | ✓                    | 8.75    | 30           | 46                        | ✓                           | 2.54  |
|                                          | 4      |          |      | <b>√</b>          |       |          |      | ✓                    |         |              |                           | <b>√</b>                    |       |
| Outer cordon - west: inbound             |        | 172      | 258  | V ✓               | 5.87  | 22       | 67   | <b>√</b>             | 6.85    | 22           | 31                        | <b>∨</b>                    | 1.76  |
| Outer cordon - south: inbound            | 4      | 142      | 131  |                   | 0.97  | 32       | 73   |                      | 5.68    | 32           | 33                        |                             | 0.23  |
| Outer cordon - north: inbound            | 5      | 185      | 201  | ✓                 | 1.12  | 64       | 196  | ×                    | 11.64   | 64           | 89                        | ✓                           | 2.93  |
|                                          |        |          |      |                   |       |          |      |                      |         |              |                           |                             |       |
| Outer cordon - west: outbound            | 4      | 143      | 166  | ✓                 | 1.82  | 30       | 96   | $\checkmark$         | 8.35    | 30           | 44                        | $\checkmark$                | 2.28  |
|                                          |        |          |      |                   |       |          |      |                      |         |              |                           |                             |       |
| Outer cordon - south: outbound           | 4      | 129      | 110  | ✓                 | 1.75  | 31       | 79   | ✓                    | 6.49    | 31           | 36                        | ✓                           | 0.88  |
| Outer cordon - north; outbound           | 5      | 210      | 216  | ✓                 | 0.39  | 59       | 166  | ×                    | 10.16   | 59           | 76                        | ✓                           | 2.09  |
|                                          | Ĭ      |          |      |                   |       |          |      |                      |         |              |                           |                             |       |
| RSI cordon - west: inbound               | 3      |          | 87   | <b>√</b>          | 0.81  | 15       | 44   | <b>√</b>             | 5.21    | 15           | 20                        | ✓                           | 1.06  |
| RSI cordon - south: inbound              | 3      |          | 82   | ✓                 | 0.35  | 22       | 49   | ✓                    | 4.44    | 22           | 22                        | ✓                           | 0.01  |
| RSI cordon - north: inbound              | 3      | 170      | 182  | ✓                 | 0.90  | 57       | 183  | ×                    | 11.54   | 57           | 83                        | ✓                           | 3.18  |
| RSI cordon - west: outbound              | 3      | 95       | 82   | ✓                 | 1.41  | 16       | 57   | <b>√</b>             | 6.75    | 16           | 26                        | ✓                           | 2.13  |
| RSI cordon - south: outbound             | 3      | 76       | 74   | ✓                 | 0.26  | 21       | 48   | ✓                    | 4.73    | 21           | 22                        | ✓                           | 0.30  |
| RSI cordon - north: outbound             | 3      |          | 192  | ✓                 | 0.33  | 57       | 147  | ✓                    | 8.94    | 57           | 67                        | ✓                           | 1.30  |
| % screenlines meet WebTAG cr             |        |          |      | 100%              | 96%   |          |      | 89%                  | 54%     |              |                           | 100%                        | 100%  |
| 70 Screenings meet WebTAG CI             | itelia |          |      | 100 /0            | 90 /0 |          |      | 09/0                 | J4 /0   |              | l                         | 100 /0                      | 10070 |



Table 4-3: PM peak short screenline validation

|                                              |            |          |                 |                   |       | Screenli |      | WebTAG ci            | riteria |          |      |                                                  |       |
|----------------------------------------------|------------|----------|-----------------|-------------------|-------|----------|------|----------------------|---------|----------|------|--------------------------------------------------|-------|
|                                              | No of      | Observed | LGV<br>Madellad | /s<br>  Link flow |       | Observed | HG\  |                      |         | Observed |      | djustment)<br>I Link flow I                      |       |
| Short Screenline                             | Counts     | Count    | Flow            | difference        | GEH   | Count    | Flow | Link flow difference | GEH     | Count    | Flow | difference                                       | GEH   |
| Inner cordon - west: inbound                 | 3          | 54       | 56              | ✓                 | 0.22  | 5        | 3    | ✓                    | 1.01    | 5        | 4    | ✓                                                | 0.86  |
| Inner cordon - south: inbound                | 4          | 92       | 73              | <b>√</b>          | 2.05  | 20       | 30   | ✓                    | 2.08    | 20       | 33   | <b>√</b>                                         | 2.55  |
| Inner cordon - north: inbound                | 4          | 42       | 43              | ✓                 | 0.20  | 22       | 18   | <b>√</b>             | 0.80    | 22       | 20   | ✓                                                | 0.42  |
|                                              | ·          |          |                 |                   |       |          |      |                      |         |          |      |                                                  |       |
| Inner cordon - west: outbound                | 3          | 49       | 46              | ✓                 | 0.36  | 11       | 8    | ✓                    | 0.96    | 11       | 9    | ✓                                                | 0.71  |
| Inner cordon - south: outbound               | 4          | 99       | 76              | ✓                 | 2.42  | 28       | 26   | ✓                    | 0.36    | 28       | 28   | ✓                                                | 0.09  |
| Inner cordon - north: outbound               | 4          | 65       | 65              | ✓                 | 0.00  | 40       | 23   | ✓                    | 3.01    | 40       | 25   | ✓                                                | 2.60  |
| Intermediate cordon -                        |            |          |                 |                   |       |          |      |                      |         |          |      |                                                  |       |
| northwest: inbound                           | 5          | 53       | 52              | ✓                 | 0.14  | 11       | 19   | ✓                    | 1.90    | 11       | 20   | ✓                                                | 2.27  |
| Intermediate cordon -                        |            |          |                 |                   |       |          |      |                      |         |          |      |                                                  |       |
| southwest: inbound                           | 3          | 31       | 31              | ✓                 | 0.02  | 3        | 2    | ✓                    | 0.78    | 3        | 2    | ✓                                                | 0.67  |
| Intermediate cordon - south:                 |            |          |                 |                   |       |          |      |                      |         |          |      |                                                  |       |
| inbound                                      | 6          | 75       | 73              | ✓                 | 0.26  | 11       | 20   | ✓                    | 2.29    | 11       | 21   | ✓                                                | 2.67  |
| Intermediate cordon - north: inbound         | 3          | 40       | 00              | <b>√</b>          | 0.00  | 5        | 1    | <b>√</b>             | 0.00    | 5        | 1    | <b>√</b>                                         | 0.00  |
| Intermediate cordon - east:                  | 3          | 18       | 20              | v                 | 0.36  | 5        | 1    | v                    | 2.36    | 5        | 1    | · ·                                              | 2.29  |
| inbound                                      | 4          | 57       | 67              | ✓                 | 1.31  | 28       | 64   | ✓                    | 5.42    | 28       | 70   | ✓                                                | 6.09  |
|                                              |            | - 01     | 01              |                   | 1.01  | 20       | 01   |                      | 0.12    | 20       | - 10 |                                                  | 0.00  |
| Intermediate cordon -                        | _          |          | 50              | ✓                 | 0.40  | 07       | 07   | ✓                    | 0.40    |          |      | _                                                | 0.50  |
| northwest: outbound<br>Intermediate cordon - | 5          | 55       | 56              | V                 | 0.19  | 27       | 27   | V                    | 0.12    | 27       | 30   | V                                                | 0.58  |
| southwest: outbound                          | 3          | 38       | 38              | ✓                 | 0.03  | 10       | 3    | ✓                    | 2.56    | 10       | 3    | ✓                                                | 2.42  |
| Intermediate cordon - south:                 | 3          | 30       | 30              | <u> </u>          | 0.03  | 10       | 3    | ·                    | 2.50    | 10       | 3    | <del>                                     </del> | 2.42  |
| outbound                                     | 6          | 84       | 87              | ✓                 | 0.30  | 23       | 18   | ✓                    | 1.05    | 23       | 20   | ✓                                                | 0.67  |
| Intermediate cordon - north:                 |            |          |                 |                   |       |          |      |                      |         |          |      |                                                  |       |
| outbound                                     | 3          | 33       | 35              | ✓                 | 0.35  | 15       | 5    | ✓                    | 3.12    | 15       | 6    | ✓                                                | 2.94  |
| Intermediate cordon - east:                  |            |          |                 |                   |       |          |      |                      |         |          |      |                                                  |       |
| outbound                                     | 4          | 65       | 74              | ✓                 | 1.07  | 26       | 74   | ✓                    | 6.78    | 26       | 81   | ✓                                                | 7.48  |
| Outer cordon - west: inbound                 | 4          | 75       | 194             | ×                 | 10.24 | 8        | 38   | ✓                    | 6.34    | 8        | 42   | ✓                                                | 6.81  |
| Outer cordon - south: inbound                | 4          | 85       | 90              | ✓                 | 0.51  | 13       | 35   | ✓                    | 4.42    | 13       | 38   | ✓                                                | 4.90  |
| Outer cordon - north: inbound                | 5          | 136      | 171             | ✓                 | 2.84  | 44       | 136  | ✓                    | 9.66    | 44       | 148  | ×                                                | 10.60 |
|                                              |            |          |                 |                   |       |          |      |                      |         |          |      |                                                  |       |
| Outer cordon - west: outbound                | 4          | 100      | 141             | ✓                 | 3.73  | 24       | 66   | ✓                    | 6.16    | 24       | 72   | ✓                                                | 6.82  |
|                                              |            |          |                 |                   |       |          |      |                      |         |          |      |                                                  |       |
| Outer cordon - south: outbound               | 4          | 108      | 93              | ✓                 | 1.54  | 33       | 52   | ✓                    | 2.91    | 33       | 57   | ✓                                                | 3.53  |
|                                              |            |          |                 |                   |       |          |      |                      |         |          |      |                                                  |       |
| Outer cordon - north: outbound               | 5          | 187      | 233             | ✓                 | 3.13  | 55       | 176  | X                    | 11.28   | 55       | 192  | X                                                | 12.34 |
| RSI cordon - west: inbound                   | 3          | 59       | 62              | ✓                 | 0.35  | 9        | 25   | ✓                    | 4.07    | 9        | 28   | ✓                                                | 4.48  |
| RSI cordon - south: inbound                  | 3          | 59       | 59              | ✓                 | 0.02  | 13       | 30   | ✓                    | 3.50    | 13       | 32   | ✓                                                | 3.96  |
| RSI cordon - north: inbound                  | 3          | 127      | 159             | ✓                 | 2.65  | 37       | 135  | ✓                    | 10.59   | 37       | 147  | ×                                                | 11.50 |
| RSI cordon - west: outbound                  | 3          | 75       | 82              | <b>√</b>          | 0.84  | 13       | 30   | <b>√</b>             | 3.66    | 13       | 32   | ✓                                                | 4.11  |
| RSI cordon - south: outbound                 | 3          |          | 61              | ✓                 | 0.20  | 15       | 40   | ✓                    | 4.68    | 15       | 44   | ✓                                                | 5.19  |
| RSI cordon - north; outbound                 | 3          |          | 188             | ·                 | 1.51  | 49       | 148  | · /                  | 10.05   | 49       | 162  | ×                                                | 11.03 |
|                                              |            | 100      | 100             |                   |       | 70       | 170  |                      |         | 70       | 102  |                                                  |       |
| % screenlines meet WebTAG cr                 | iteria - : |          |                 | 96%               | 96%   |          |      | 96%                  | 71%     |          |      | 86%                                              | 71%   |



Table 4-4 provides a summary of the above validation for short screenlines.

Table 4-4: LGV/HGV Validation Summary

|           |      | screenlines m<br>difference cri | eeting link flow<br>Iteria | % of sho | rt screenlines<br>criteria | meeting GEH              |
|-----------|------|---------------------------------|----------------------------|----------|----------------------------|--------------------------|
|           | LGV  | HGV                             | HGV (post adjustment)      | LGV      | HGV                        | HGV (post<br>adjustment) |
| AM Peak   | 100% | 86%                             | 100%                       | 96%      | 57%                        | 89%                      |
| Interpeak | 100% | 89%                             | 100%                       | 96%      | 54%                        | 100%                     |
| PM Peak   | 96%  | 96%                             | 86%                        | 96%      | 71%                        | 71%                      |

For the short screenlines, the validation is very good for LGVs with at least 96% of short screenlines passing both the GEH and flow difference criteria. For HGVs the validation is good for the flow difference criteria, with at least 86% of short screenlines passing the criteria, but not so good in relation to GEH. However, with a post processing adjustment of the HGV modelled flows, both the flow difference criteria and GEH improve for the AM and IP. The PM has a slight decrease in fit, as there is an imbalance of the HGV adjustments required for central Bath compared to the outskirts, so the central area was prioritized since this is where a CAZ is being considered.

It can be seen that closer to the centre of Bath the fit is better, i.e. for the intermediate and inner cordons. In particular, for the inner cordon short screenlines, the AM and IP results show just one short screenline which does not pass the GEH criteria in each of these time periods for the unadjusted HGVs. All inner cordon short screenlines in the AM and IP meet the flow difference criteria and all meet the GEH and flow difference criteria in the PM. With the post processing HGV adjustment, the inner cordon validation improves further.

Since the CAZ options now being considered relate to just the central area of Bath the HGV model fit is considered to be sufficient in the relevant part of the model. The post processing of HGV flows further improves the model fit and the robustness of the data to feed into the air quality modelling.

Furthermore, when comparing the number of HGVs to the total short screenline flow, observed and modelled, for all three time periods, the average observed proportion is 1.3-2.0% and he average modelled proportion is 2.8-5.5%. The results are summarised in Table 4-5 below.



Table 4-5: Proportion of HGV compared to Total Flow

| -                                           |              |               | A            | м             |              |               |              |               |              | P             |              |               |              |               | Р            | м             |              |               |
|---------------------------------------------|--------------|---------------|--------------|---------------|--------------|---------------|--------------|---------------|--------------|---------------|--------------|---------------|--------------|---------------|--------------|---------------|--------------|---------------|
|                                             | Total        | Flow          | l HG         |               | l % F        | IGV           | Total        | Flow          |              | iVs           | l % H        | IGV           | Total        | Flow          | l HG         |               | % F          | IGV           |
|                                             |              |               |              |               |              | 1             |              | 1             | _            | 1             |              |               |              |               |              |               |              | 1             |
| Chart Caraarlina                            | Obs<br>Count | Model<br>Flow |
| Short Screenline<br>Inner cordon - west:    | 1.576        | 1.517         | 12           | 7             | 0.8%         | 0.4%          | 1.000        | 1.005         | 6            | 3             | 0.6%         | 0.3%          | 1.285        | 1.291         | 5            | 3             | 0.4%         | 0.3%          |
| Inner cordon - south:                       | 1324         | 1327          | 32           | 69            | 2.4%         | 5.2%          | 1141         | 1154          | 20           | 60            | 1.7%         | 5.2%          | 1127         | 1053          | 20           | 30            | 1.7%         | 2.8%          |
| Inner cordon - north:                       | 1320         | 1528          | 28           | 37            | 2.1%         | 2.4%          | 1110         | 1098          | 21           | 38            | 1.9%         | 3.5%          | 1178         | 1163          | 22           | 18            | 1.9%         | 1.6%          |
|                                             |              |               |              |               |              |               |              |               |              |               |              |               |              |               |              |               |              |               |
| Inner cordon - west:                        | 1236         | 1223          | 8            | 10            | 0.6%         | 0.8%          | 1009         | 1026          | 6            | 5             | 0.6%         | 0.5%          | 1302         | 1277          | 11           | 8             | 0.8%         | 0.6%          |
| Inner cordon - south:<br>outbound           | 886          | 834           | 23           | 48            | 2.6%         | 5.8%          | 1005         | 1005          | 17           | 42            | 1.7%         | 4.2%          | 1193         | 1126          | 28           | 26            | 2.3%         | 2.3%          |
| Inner cordon - north:                       | 1691         | 1572          | 34           | 45            | 2.0%         | 2.9%          | 1265         | 1320          | 22           | 47            | 1.7%         | 3.6%          | 1693         | 1731          | 40           | 23            | 2.4%         | 1.3%          |
|                                             | 1091         | 1072          | 34           | 40            | 2.070        | 2.970         | 1200         | 1320          |              | 41            | 1.7 70       | 3.070         | 1093         | 1731          | 40           | 23            | 2.4 /0       | 1.370         |
| Intermediate cordon -                       |              |               |              |               |              |               |              |               |              |               |              |               |              |               |              |               |              |               |
| northwest: inbound                          | 1667         | 1601          | 20           | 43            | 1.2%         | 2.7%          | 1006         | 932           | 12           | 25            | 1.2%         | 2.7%          | 1098         | 981           | 11           | 19            | 1.0%         | 1.9%          |
| Intermediate cordon -                       | 700          | 700           | 4            |               | 0.50/        | 0.00/         | 500          | 247           | ١ ,          | 4             | 0.50/        | 0.00/         | 004          | 500           | ا م          | 0             | 0.40/        | 0.20/         |
| southwest: inbound<br>Intermediate cordon - | 782          | 700           | 4            | 6             | 0.5%         | 0.9%          | 508          | 347           | 3            | 1             | 0.5%         | 0.3%          | 631          | 560           | 3            | 2             | 0.4%         | 0.3%          |
| south: inbound                              | 2260         | 2135          | 23           | 47            | 1.0%         | 2.2%          | 1174         | 1156          | 17           | 35            | 1.5%         | 3.0%          | 1495         | 1473          | 11           | 20            | 0.7%         | 1.3%          |
| Intermediate cordon -                       | 2200         | 2133          | 23           | 41            | 1.0 /6       | 2.2 /0        | 11/4         | 1130          | 17           | 33            | 1.576        | 3.076         | 1495         | 1473          | - 11         | 20            | 0.7 70       | 1.370         |
| north: inbound                              | 1113         | 1150          | 16           | 3             | 1.4%         | 0.2%          | 440          | 436           | 5            | 5             | 1.1%         | 1.1%          | 656          | 670           | 5            | 1             | 0.8%         | 0.2%          |
| Intermediate cordon -                       |              |               |              |               | 11170        | 0.270         |              |               | Ť            | Ů             | 11170        | 11170         |              | 0.0           | Ť            | ·             | 0.070        | 0.270         |
| east: inbound                               | 1474         | 1461          | 39           | 106           | 2.6%         | 7.3%          | 1248         | 1214          | 28           | 124           | 2.2%         | 10.2%         | 1595         | 1618          | 28           | 64            | 1.7%         | 4.0%          |
| Intermediate cordon -                       |              |               |              |               |              |               |              |               |              |               |              |               |              |               |              |               |              |               |
| northwest: outbound                         | 1047         | 694           | 24           | 25            | 2.2%         | 3.6%          | 1000         | 914           | 19           | 34            | 1.9%         | 3.7%          | 1529         | 1222          | 27           | 27            | 1.7%         | 2.2%          |
| Intermediate cordon -                       | 1047         | 094           | 24           | 20            | 2.2/0        | 3.0 /6        | 1000         | 914           | 19           | 34            | 1.970        | 3.1 /0        | 1029         | 1222          | 21           | 21            | 1.7 70       | 2.2 /0        |
| southwest: outbound                         | 527          | 373           | 7            | 3             | 1.3%         | 0.9%          | 518          | 323           | 7            | 4             | 1.3%         | 1.1%          | 800          | 459           | 10           | 3             | 1.2%         | 0.7%          |
| Intermediate cordon -                       | 02.          | 0.0           | ·            |               | 1.070        | 0.070         | 0.0          | 020           |              | ·             | 11070        | 11170         |              | .00           |              |               | 1.1270       | U.1.70        |
| south: outbound                             | 1426         | 1369          | 25           | 37            | 1.7%         | 2.7%          | 1119         | 1082          | 20           | 36            | 1.8%         | 3.3%          | 1829         | 1704          | 23           | 18            | 1.3%         | 1.1%          |
| Intermediate cordon -                       |              |               |              |               |              |               |              |               |              |               |              |               |              |               |              |               |              |               |
| north: outbound                             | 749          | 762           | 18           | 5             | 2.4%         | 0.7%          | 419          | 411           | 7            | 4             | 1.8%         | 1.0%          | 964          | 1021          | 15           | 5             | 1.5%         | 0.5%          |
| Intermediate cordon -                       |              |               |              |               |              |               |              |               |              |               |              |               |              |               |              |               |              |               |
| east: outbound                              | 1734         | 1681          | 35           | 111           | 2.0%         | 6.6%          | 1282         | 1197          | 30           | 101           | 2.4%         | 8.5%          | 1468         | 1527          | 26           | 74            | 1.8%         | 4.8%          |
| Outer cordon - west:                        | 2591         | 2231          | 37           | 105           | 1.4%         | 4.7%          | 1439         | 1472          | 22           | 67            | 1.5%         | 4.6%          | 1409         | 1687          | 8            | 38            | 0.6%         | 2.3%          |
| Outer cordon - south:                       | 2856         | 2726          | 41           | 74            | 1.4%         | 2.7%          | 1481         | 1434          | 32           | 73            | 2.2%         | 5.1%          | 1588         | 1548          | 13           | 35            | 0.8%         | 2.2%          |
| Outer cordon - north:                       | 4179         | 3718          | 98           | 243           | 2.3%         | 6.5%          | 1985         | 2030          | 64           | 196           | 3.2%         | 9.7%          | 2889         | 2752          | 44           | 136           | 1.5%         | 4.9%          |
| Outer cordon - west:                        |              |               |              |               |              |               |              |               |              |               |              |               |              |               |              |               |              |               |
| outbound                                    | 1732         | 1785          | 26           | 72            | 1.5%         | 4.0%          | 1568         | 1557          | 30           | 96            | 1.9%         | 6.2%          | 2398         | 2364          | 24           | 66            | 1.0%         | 2.8%          |
| Outer cordon - south:                       |              |               |              |               | 1.070        | 11070         |              | 1007          |              |               | 11070        | 0.270         | 2000         | 2001          |              |               | 11070        | 2.070         |
| outbound                                    | 1360         | 1475          | 23           | 66            | 1.7%         | 4.5%          | 1517         | 1462          | 31           | 79            | 2.0%         | 5.4%          | 2911         | 2578          | 33           | 52            | 1.1%         | 2.0%          |
| Outer cordon - north:                       |              |               |              |               |              |               |              |               |              |               |              |               |              |               |              |               |              |               |
| outbound                                    | 2569         | 2519          | 60           | 235           | 2.3%         | 9.3%          | 1963         | 1987          | 59           | 166           | 3.0%         | 8.4%          | 3235         | 3483          | 55           | 176           | 1.7%         | 5.0%          |
| RSI cordon - west:                          | 1608         | 1497          | 25           | 59            | 1.6%         | 3.9%          | 1049         | 1037          | 15           | 44            | 1.5%         | 4.2%          | 1337         | 1271          | 9            | 25            | 0.6%         | 2.0%          |
| RSI cordon - south:                         | 1677         | 1679          | 26           | 56            | 1.5%         | 3.4%          | 897          | 917           | 22           | 49            | 2.5%         | 5.3%          | 1047         | 1034          | 13           | 30            | 1.3%         | 2.9%          |
| RSI cordon - north:                         | 3206         | 3141          | 87           | 232           | 2.7%         | 7.4%          | 1697         | 1856          | 57           | 183           | 3.3%         | 9.9%          | 2527         | 2630          | 37           | 135           | 1.5%         | 5.1%          |
|                                             |              |               |              |               |              |               |              | 1007          |              |               |              | 5.7%          |              |               |              |               |              | 1.7%          |
| RSI cordon - west: RSI cordon - south:      | 1161<br>853  | 1150<br>884   | 11<br>14     | 48<br>34      | 1.0%<br>1.6% | 4.2%<br>3.8%  | 1070<br>876  | 903           | 16<br>21     | 57<br>48      | 1.5%<br>2.4% | 5.7%          | 1764<br>1545 | 1756<br>1577  | 13<br>15     | 30<br>40      | 0.7%<br>1.0% | 2.5%          |
| RSI cordon - south:                         | 2229         | 2257          | 57           | 202           | 2.6%         | 8.9%          | 1702         | 1816          | 57           | 147           | 3.3%         | 8.1%          | 2809         | 3051          | 49           | 148           | 1.7%         | 4.9%          |
| itor cordon - nordi.                        | 2223         | 2201          | JI           | 202           | 2.070        | 0.970         | 1702         | 1010          | - 51         | 177           | 0.070        | 0.170         | 2008         | 5001          | 73           | 1-10          | 1.7 70       | 7.370         |

At the level of individual links, validation is good for both LGVs and HGVs with almost all the links meeting the flow criteria, and at least 80% meeting the GEH criteria. The post processed HGVs also show a marked improvement with at least 87% of links meeting GEH criteria. This is summarised in Tables Table 4-6Table 4-8 below.

These tables also show that whilst there are some fairly high percentage differences in total cordon HGV flows, due in part to the relatively low number of observed HGVs, the post adjustment HGV flows are much closer to observed flows, particularly for the inner cordon which is the part of the model that is most relevant for CAZ option testing. For the inner cordon modelled vs count bi-directional totals for post-adjustment flows are within 6% across all time periods.



Table 4-6: AM LGV/HGV Cordon and Link Validation Summary

|                                |        |          |          |            |           |          |          | Screenline | meeting Web | TAG criteria | 1        |          |          |               |           |          |
|--------------------------------|--------|----------|----------|------------|-----------|----------|----------|------------|-------------|--------------|----------|----------|----------|---------------|-----------|----------|
|                                |        |          |          | LGVs       |           |          |          |            | HGVs        |              |          |          | HGV      | s (post adjus | stment)   |          |
|                                | No. of | Observed | Modelled | %          | % Links   | % Links  | Observed | Modelled   | %           | % Links      | % Links  | Observed | Modelled | %             | % Links   | % Links  |
| Short Screenline               | Counts | Count    | Flow     | Difference | Meet Flow | Meet GEH | Count    | Flow       | Difference  | Meet Flow    | Meet GEH | Count    | Flow     | Difference    | Meet Flow | Meet GEH |
| Inner cordon - inbound         | 11     | 307      | 320      | 4%         | 100%      | 91%      | 72       | 113        | 57%         | 100%         | 91%      | 72       | 69       | -3%           | 100%      | 91%      |
| Inner cordon - outbound        | 11     | 279      | 279      | 0%         | 100%      | 100%     | 65       | 103        | 59%         | 100%         | 91%      | 65       | 64       | -2%           | 100%      | 91%      |
| Inner cordon - total           | 22     | 585      | 599      | 2%         | 100%      | 95%      | 137      | 216        | 58%         | 100%         | 91%      | 137      | 133      | -3%           | 100%      | 91%      |
| Intermediate cordon - inbound  | 21     | 416      | 414      | 0%         | 100%      | 100%     | 102      | 204        | 101%        | 100%         | 90%      | 102      | 126      | 24%           | 100%      | 100%     |
| Intermediate cordon - outbound | 21     | 298      | 289      | -3%        | 100%      | 95%      | 108      | 181        | 67%         | 95%          | 86%      | 108      | 112      | 3%            | 95%       | 86%      |
| Intermediate cordon - total    | 42     | 714      | 704      | -1%        | 100%      | 98%      | 210      | 386        | 84%         | 98%          | 88%      | 210      | 238      | 13%           | 98%       | 93%      |
| Outer cordon - inbound         | 13     | 635      | 743      | 17%        | 100%      | 92%      | 175      | 423        | 142%        | 100%         | 69%      | 175      | 260      | 49%           | 100%      | 92%      |
| Outer cordon - outbound        | 13     | 418      | 475      | 14%        | 100%      | 100%     | 109      | 372        | 242%        | 100%         | 62%      | 109      | 229      | 110%          | 100%      | 85%      |
| Outer cordon - total           | 26     | 1053     | 1217     | 16%        | 100%      | 96%      | 284      | 795        | 180%        | 100%         | 65%      | 284      | 490      | 72%           | 100%      | 88%      |
| RSI cordon - inbound           | 10     | 476      | 478      | 1%         | 90%       | 90%      | 138      | 348        | 152%        | 100%         | 70%      | 138      | 214      | 55%           | 100%      | 90%      |
| RSI cordon - outbound          | 10     | 322      | 336      | 4%         | 100%      | 100%     | 82       | 284        | 245%        | 100%         | 60%      | 82       | 175      | 113%          | 100%      | 90%      |
| RSI cordon - total             | 20     | 798      | 815      | 2%         | 95%       | 95%      | 220      | 631        | 187%        | 100%         | 65%      | 220      | 389      | 77%           | 100%      | 90%      |
| Total Over Cordons             | 220    | 6300     | 6670     | 6%         | 100%      | 97%      | 1702     | 4056       | 138%        | 99%          | 81%      | 851      | 1249     | 47%           | 99%       | 91%      |

Table 4-7: IP LGV/HGV Cordon and Link Validation Summary

|                                |        |          |          |            |           |          |          | Screenline | meeting Web | TAG criteria |          |          |          |               |           |          |
|--------------------------------|--------|----------|----------|------------|-----------|----------|----------|------------|-------------|--------------|----------|----------|----------|---------------|-----------|----------|
|                                |        |          |          | LGVs       |           |          |          |            | HGVs        |              |          |          | HGV      | s (post adjus | stment)   |          |
|                                | No. of | Observed | Modelled | %          | % Links   | % Links  | Observed | Modelled   |             | % Links      | % Links  | Observed | Modelled | %             | % Links   | % Links  |
| Short Screenline               | Counts | Count    | Flow     | Difference | Meet Flow | Meet GEH | Count    | Flow       | Difference  | Meet Flow    | Meet GEH | Count    | Flow     | Difference    | Meet Flow | Meet GEH |
| Inner cordon - inbound         | 11     | 307      | 309      | 1%         | 100%      | 100%     | 47       | 102        | 120%        | 100%         | 82%      | 47       | 47       | 0%            | 100%      | 100%     |
| Inner cordon - outbound        | 11     | 311      | 322      | 4%         | 100%      | 100%     | 45       | 94         | 110%        | 100%         | 91%      | 45       | 43       | -4%           | 100%      | 100%     |
| Inner cordon - total           | 22     | 618      | 631      | 2%         | 100%      | 100%     | 91       | 197        | 115%        | 100%         | 86%      | 91       | 89       | -2%           | 100%      | 100%     |
| Intermediate cordon - inbound  | 21     | 369      | 362      | -2%        | 100%      | 100%     | 64       | 190        | 197%        | 100%         | 95%      | 64       | 86       | 35%           | 100%      | 95%      |
| Intermediate cordon - outbound | 21     | 365      | 334      | -8%        | 100%      | 95%      | 84       | 178        | 113%        | 100%         | 95%      | 84       | 81       | -3%           | 100%      | 100%     |
| Intermediate cordon - total    | 42     | 734      | 696      | -5%        | 100%      | 98%      | 148      | 368        | 149%        | 100%         | 95%      | 148      | 168      | 13%           | 100%      | 98%      |
| Outer cordon - inbound         | 13     | 500      | 590      | 18%        | 100%      | 92%      | 117      | 337        | 187%        | 100%         | 77%      | 117      | 153      | 31%           | 100%      | 100%     |
| Outer cordon - outbound        | 13     | 483      | 492      | 2%         | 100%      | 100%     | 119      | 341        | 186%        | 100%         | 62%      | 119      | 155      | 30%           | 100%      | 100%     |
| Outer cordon - total           | 26     | 982      | 1082     | 10%        | 100%      | 96%      | 237      | 678        | 187%        | 100%         | 69%      | 237      | 309      | 30%           | 100%      | 100%     |
| RSI cordon - inbound           | 10     | 350      | 351      | 0%         | 100%      | 100%     | 94       | 275        | 192%        | 100%         | 80%      | 94       | 125      | 33%           | 100%      | 100%     |
| RSI cordon - outbound          | 10     | 359      | 348      | -3%        | 100%      | 100%     | 93       | 252        | 170%        | 100%         | 70%      | 93       | 115      | 23%           | 100%      | 100%     |
| RSI cordon - total             | 20     | 710      | 700      | -1%        | 100%      | 100%     | 188      | 528        | 181%        | 100%         | 75%      | 188      | 240      | 28%           | 100%      | 100%     |
| Total Over Cordons             | 220    | 6087     | 6216     | 2%         | 100%      | 98%      | 1327     | 3542       | 167%        | 100%         | 85%      | 663      | 806      | 21%           | 100%      | 99%      |



Table 4-8: PM LGV/HGV Cordon and Link Validation Summary

|                                |        |          |          |            |           |          |          | Screenline | meeting Wel | oTAG criteria |          |          |          |               |           |          |
|--------------------------------|--------|----------|----------|------------|-----------|----------|----------|------------|-------------|---------------|----------|----------|----------|---------------|-----------|----------|
|                                |        |          |          | LGVs       |           |          |          |            | HGVs        |               |          |          | HGV      | s (post adjus | stment)   |          |
|                                | No. of | Observed | Modelled | %          | % Links   | % Links  | Observed | Modelled   | %           | % Links       | % Links  | Observed | Modelled | %             | % Links   | % Links  |
| Short Screenline               | Counts | Count    | Flow     | Difference | Meet Flow | Meet GEH | Count    | Flow       | Difference  | Meet Flow     | Meet GEH | Count    | Flow     | Difference    | Meet Flow | Meet GEH |
| Inner cordon - inbound         | 11     | 187      | 171      | -8%        | 100%      | 100%     | 47       | 52         | 10%         | 100%          | 91%      | 47       | 56       | 20%           | 100%      | 91%      |
| Inner cordon - outbound        | 11     | 212      | 187      | -12%       | 100%      | 100%     | 79       | 57         | -28%        | 100%          | 91%      | 79       | 62       | -21%          | 100%      | 91%      |
| Inner cordon - total           | 11     | 400      | 359      | -10%       | 100%      | 100%     | 126      | 109        | -14%        | 100%          | 91%      | 126      | 119      | -6%           | 100%      | 91%      |
| Intermediate cordon - inbound  | 21     | 234      | 242      | 4%         | 100%      | 100%     | 58       | 105        | 83%         | 86%           | 90%      | 58       | 115      | 99%           | 86%       | 90%      |
| Intermediate cordon - outbound | 21     | 275      | 290      | 5%         | 100%      | 100%     | 100      | 128        | 28%         | 90%           | 90%      | 100      | 139      | 39%           | 90%       | 90%      |
| Intermediate cordon - total    | 42     | 509      | 532      | 5%         | 100%      | 100%     | 158      | 233        | 48%         | 88%           | 90%      | 158      | 254      | 61%           | 88%       | 90%      |
| Outer cordon - inbound         | 13     | 297      | 456      | 54%        | 100%      | 85%      | 65       | 209        | 221%        | 92%           | 85%      | 65       | 228      | 249%          | 92%       | 85%      |
| Outer cordon - outbound        | 13     | 396      | 467      | 18%        | 100%      | 100%     | 112      | 293        | 162%        | 100%          | 77%      | 112      | 320      | 185%          | 100%      | 77%      |
| Outer cordon - total           | 26     | 692      | 922      | 33%        | 100%      | 92%      | 177      | 502        | 183%        | 100%          | 77%      | 177      | 548      | 209%          | 96%       | 81%      |
| RSI cordon - inbound           | 10     | 246      | 280      | 14%        | 100%      | 100%     | 59       | 190        | 223%        | 100%          | 80%      | 59       | 207      | 252%          | 100%      | 80%      |
| RSI cordon - outbound          | 10     | 305      | 331      | 9%         | 100%      | 100%     | 77       | 218        | 184%        | 100%          | 90%      | 77       | 238      | 209%          | 100%      | 80%      |
| RSI cordon - total             | 20     | 550      | 611      | 11%        | 100%      | 100%     | 136      | 408        | 201%        | 100%          | 77%      | 136      | 445      | 228%          | 100%      | 80%      |
| Total Over Cordons             | 209    | 4302     | 4847     | 13%        | 100%      | 98%      | 1193     | 2504       | 110%        | 94%           | 88%      | 596      | 1365     | 129%          | 95%       | 87%      |



#### 5. Conclusion

The G-BATH model has been validated using the guidance, measures and criteria recommended in WebTAG M3.1.

The additional validation of goods vehicles set out in this note highlights the following:

- Based on the flow difference criteria both light and heavy goods vehicles meet the WebTAG
  acceptability guidelines with more than 85% of the short screenlines meeting the criteria;
- Based on GEH criteria light goods vehicles meet the acceptability guideline, while heavy goods vehicles fall short. This is, to some extent due to the low volumes of HGV traffic involved;
- In the central area of Bath, where CAZ options are now being considered, the modelled fit of HGVs is good in terms of both the flow difference and the GEH criteria; and
- A post processing adjustment to the HGV flows further improves the validation for the central area of Bath.

#### 5.1 Way Forward

The LGV flow validation is considered to be good, and so no further adjustments will be made to the modelled LGV flows for the purpose of this assessment.

The HGV validation is considered good enough to not require adjustments to the model itself. However, a 'post processing' adjustment of modelled HGV flows will be undertaken by using individual adjustment factors for each time period to yield more accurate total HGV volumes for the emissions calculations that are to be undertaken using the traffic model data. This will focus on the central area of Bath, where CAZ schemes are being considered, as presented in this note.